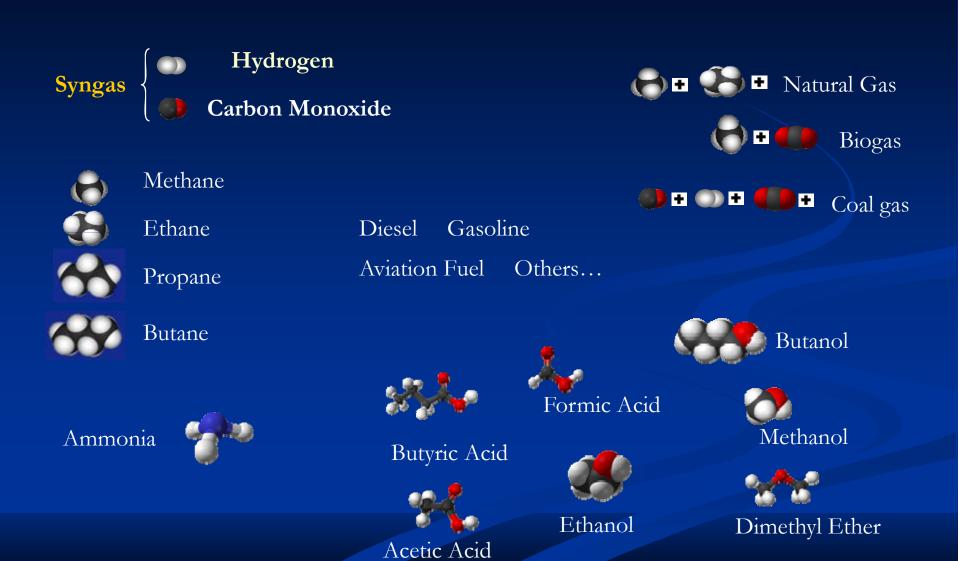
Hydrocarbon fueled solid oxide fuel cells

David Bierschenk

Energy Materials

6-3-08


Overview

- SOFC operation
- SOFC fuels
 - Hydrogen
 - Methane/ natural gas
- Anode requirements
- Hydrocarbon operation
- Current strategies
- Conclusions

SOFC Operation

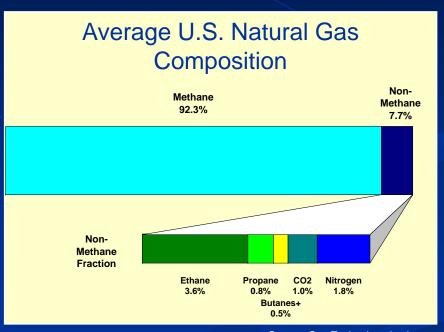
SOFC Fuels

Hydrogen

from Bossel et al.- "The future of the hydrogen economy: bright or bleak?"

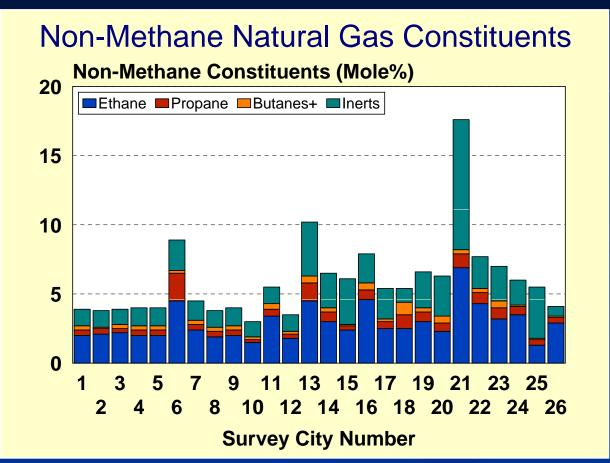
- Production
 - Electrolysis ~33% HHV
 - Steam reforming ~10% HHV
- Hydrogen compression (20MPa) >8%HHV
 - Thorough accounting ~40% HHV
- Hydrogen delivery
 - Pipeline (500km) ~7% HHV
 - Truck (100km) ~6% HHV

Hydrogen vs Liquid HC


Energy consumed for road transport of various fuels and hydrogen.

	Units	H ₂ Gas	H ₂ liquid	Methanol	Ethanol	Propane	Gasoline
Pressure	MPa	20	0.1	0.1	0.1	0.5	0.1
Weight to customer	kg	40,000	30,000	40,000	40,000	40,000	40,000
Weight from customer	kg	39,600	27,900	14,000	14,000	20,000	14,000
Delivered weight	kg	400	2,100	26,000	26,000	20,000	26,000
HHV of delivered fuel	MJ/kg	141.9	141.9	23.3	29.7	50.4	48.1
HHV energy per truck	G	57	298	580	771	1007	1252
Relative to gasoline	-	0.045	0.238	0.464	0.616	0.805	1
Diesel consumed	kg	79.6	57.9	54	54	60	54
Diesel HHV energy	G	3.56	2.59	2.41	2.41	2.68	2.41
IC engine vehicles:							
Energy consumed to	%	6.27	0.87	0.42	0.31	0.27	0.19
HHV energy delivered							
Relative to gasoline	-	32.5	4.5	2.2	1.6	1.4	1
No. of trucks for same	-	22.0	4.1	2.2	1.6	1.4	1
no. of serviced cars							
Fuel cell vehicles:							
H2-efficiency factor	-	0.7	0.7	1	1	1	1
HHV energy delivered	GJ/d	876	876	1252	1252	1252	1252
No. of trucks for same	-	15.4	2.9	2.2	1.62	1.24	1
no. of serviced cars							

Figure is from: Bossel, U., B. Eliasson, and G. Taylor, eds. *The future of the hydrogen economy: bright or bleak?* Vol. E08. 2003, European Fuel Cell Forum.

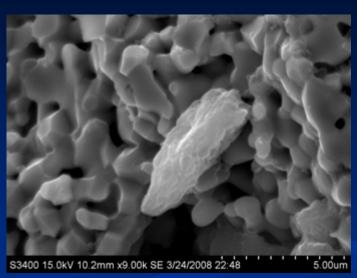

Natural Gas/Methane

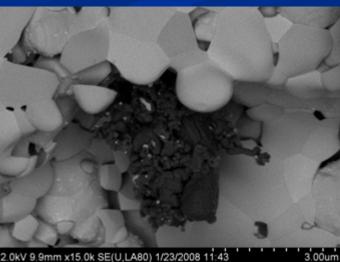
- CHEAP and abundant
- Established delivery & storage infrastructure
- Variable composition
- Added odorants
 - ~5ppm sulfur compounds

Source: Gas Technology Institute

Natural Gas/Methane- Composition

Source: Gas Technology Institute


Anode Requirements

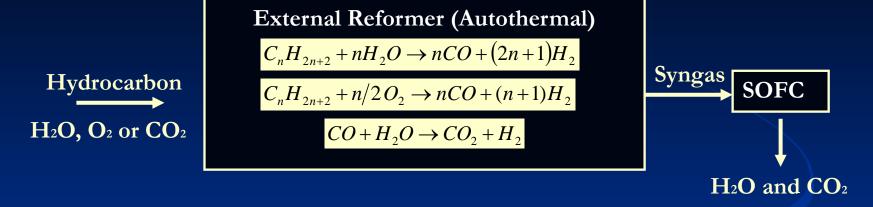

- Basic (hydrogen):
 - Electronic and ionic pathways
 - Porous
 - TEC compatibility
 - Chemical stability

Ni-YSZ satisfies requirements

- Hydrocarbon req.:
 - Activity for HC oxidation
 - Low activity for HC pyrolysis
 - Stabile in impurities

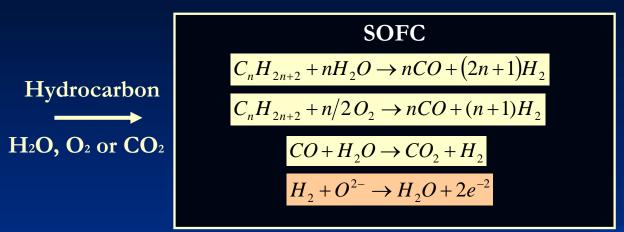
Ni-YSZ is not sulfur tolerant and has high activity for pyrolysis

Problem


- Hydrocarbons are excellent energy carriers
- Hydrogen is a poor energy carrier
- Hydrogen is best SOFC fuel
 - Anode requirements increase substantially for other fuels

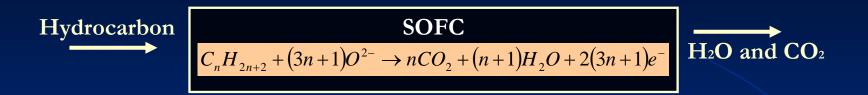
Solution

■ Reform natural gas, then operate on H₂ generated



Strategies: External Reforming

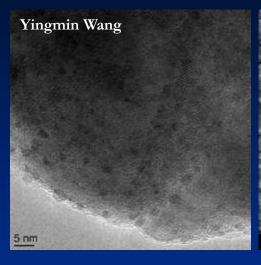
- Utilize advantages of hydrocarbons and hydrogen
- Increased balance of plant costs


Strategies: Internal Reforming

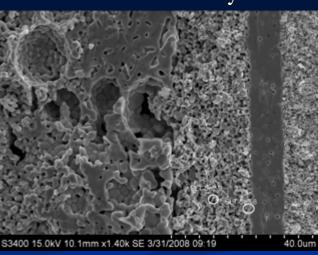
H₂O and CO₂

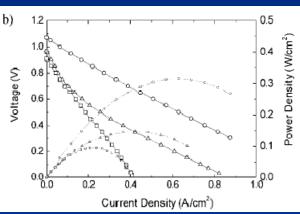
- Large thermal gradients
- System cost and complexity are greatly reduced
- Energy loss from heat transport avoided

Strategies: Direct Oxidation


- No added reformate- the fuel stream is not diluted and the cell voltage is not reduced
- Large thermal gradients avoided
- System cost and complexity are greatly reduced
- Energy loss from heat transport avoided
- Better materials needed

Some Current Strategies


Cu -Cermet


Adv. Mater. 2000, 12, No. 19, October 2 5kV x4000 — 2μm

Oxide anodes

Diffusion barrier layer

B.D. Madsen et al. / Journal of Power Sources 166 (2007) 64–67

Adv. Mater. 2000, 12, No. 19, October 2

Conclusions

- Hydrogen currently a poor energy carrier
- Natural gas a good SOFC fuel
- Most current SOFCs reform methane, operate on syngas generated
- Direct oxidation is ideal operating mode